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3  Go o d n e s s - of -F i t  P r o b a b i l i s t i c  Mo d e l s  fo r  E V  C h a r g i n g  i n 
C a r i b b e a n  S m a l l  Is l a n d  S t a t e s

L. M. Addison, G. A. Hosein, S. Bahadoorsingh and C. Sharma

Globally, the impact of fossil fuel consumption on climate change has been an import-
ant topic of discussion in recent times. According to the IPCC (2019), the transportation 
sector accounted for 14 % of the global greenhouse emissions in 2014. In addition, the 
Energy Information Administration (EIA) (2019) reported that 28 % of the United States 
energy consumption was used for transportation, with 92 % of that being supplied by 
petroleum, while nearly 81 % of the energy supply of Caribbean states comes from oil 
products (FOCUS, 2016). Some estimates suggest Small Island Developing States (SIDS) 
globally would save around $3.3 billion annually if they switched all energy to renewable 
sources, especially in the Pacific and Indian Oceans (Atteridge & Savvidou, 2019). As a 
result, the use of electric vehicles (EVs) in communities is seen as a viable alternative in 
many regions worldwide, including the Caribbean. 

Small islands are a prime market for EVs with limited road networks, high fuel 
costs and the need for direct grid storage solutions (Gay, Rogers, & Shirley, 2018). Many 
SISs also have favourable renewable energy resources, and renewable energy transition 
roadmaps are emerging. For instance, with minimal modifications to its infrastructure, 
the Caribbean island of Barbados can accommodate at least 20 % renewable energy pen-
etration onto its grid (Gay et al., 2018). Since 2018, Barbados has been a regional leader 
in EV deployment in the Caribbean, where 1.28 % of their new car sales were electric, 
greater than in some higher-income countries, such as Canada (Prado, 2019). 

Consequently, this reflects the need to adequately prepare electrical grids in SISs, 
based on driving patterns related to EVs. There are different types of EVs, classified by the 
amount of electricity used as the energy source. Battery Electric Vehicles (BEVs or most 
commonly EVs) and Plug-in Hybrid Electric Vehicles (PHEVs) are two main classifica-
tions of Plug-in Electric Vehicles (PEVs). In general, PEVs have been identified as the main 
future alternative to conventional automobiles powered by Internal Combustion Engines 
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(Almutairi, Alotaibi, & Salama, 2018). This is due to the fact that they are environmentally 
friendly and economically efficient, since they emit significantly fewer greenhouse gases 
(GHGs) per kilometre driven, as well as being less costly to operate (Almutairi et al., 2018). 

Despite these advantages, the electrical power system would be directly impacted 
by the integration of such vehicles on the grid (Darabi & Ferdowsi, 2011). Power and en-
ergy consumed by these vehicles can be variable, and frequency of connection onto the 
grid depends on certain characteristics associated with driving behaviour and journey 
requirements. In order to analyse the impact of the EVs on the power system, models of 
charging curves are integral to the process. It is important to consider the aggregate ef-
fects of charging EVs on the electric power system infrastructure (Louie, 2015). As such, 
integration of EVs within the smart grid framework requires careful analysis. 

SISs endeavouring to reduce their carbon footprints would need to extensively 
analyse the effects of EV charging as these grids are inherently small, and small distur-
bances can wreak havoc on the electricity supply quality. In the first instance, since there 
are no available data, the use of probabilistic models of charging station loads can assist 
greatly in this process and predict the expected impacts on the network’s asset utilisa-
tion, health of the grid and overall success of the introduction of EVs.

As such, charging management is crucial since an increase in the number of EVs 
increases the additional loads. This can lead to a change in SISs daily load profiles and, 
subsequently, an increase in the demand peak. Any change in the daily load profile can 
subsequently affect a utility’s ability to manage generation, supply and distribution, 
with respect to time and grid constraints, while increasing peak demand can put a 
strain on existing generating capacity (Dyke, Schofield, & Barnes, 2010). The uncoordi-
nated charging of many EVs can compromise the grid in a number of ways. Hence, there 
is a need to assess the strategies to coordinate EV charging using available variables.

Management of EV penetration is necessary, since uncoordinated charging can 
produce an unbalanced distribution network of loads, possible overloads of distribution 
transformers, and cables/conductors, and sudden variations in the power quality of sup-
ply. Uncoordinated charging refers to the scenario where there is no control over when 
EVs are charged. This scenario significantly increases the peak demand and will require 
upgrades to the distribution grid, especially the upgrading of the distribution transform-
ers. It can also lead to an increase in load imbalances, possible outages, as well as current 
and voltage variations. The research by Calearo, Thingvad, Suzuki, and Marinelli (2019) 
highlights how uncontrolled distribution of single-phase charging could be responsible 
for local voltage disturbances. These negative effects will increase if there are no Demand 
Side Management (DSM) schemes (Bahadoorsingh, Meetoo, Sharma, & Hosein, 2018) to 
reduce or shift energy consumption from peak hours to leaner demand periods.
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On the other hand, a properly designed and well coordinated Time of Use (ToU) 
charging scheme can provide better flexibility and reliability to the entire electrical sys-
tem (Flammini et al., 2019). According to Green, Wang, and Alam (2010), factors such as 
driving patterns, charging characteristics (vehicle demand profiles), charging timing 
(the magnitude and duration of charging cycle) and vehicle penetration impact the elec-
tric network. To demonstrate the capabilities of a coordination scheme, actual data and 
driver behaviours need to be available to perform simulations.

However, the scarcity of available real data regarding EVs and charging stations 
has forced researchers to first develop probability distributions for a number of variables 
(Flammini et al., 2019). Further to this, Almutairi et al. (2018) expressed the need to con-
duct a statistical evaluation among a wide range of available theoretical probability densi-
ty functions (PDFs), in order to find the best model, to reflect the random characteristics 
of each driver behaviour variable. It should be noted that the driving behaviour of a typical 
SIS citizen is not necessarily the same as a driver resident in a metropolitan area. A met-
ropolitan area has a significantly more complex and expansive transportation network. 
In a metropolitan area, driving patterns on the weekdays may include journeys from res-
idences to transportation hubs before using mass transportation to commute into cities. 

In some cases, residents may choose to commute daily with their own vehicles 
from their suburban residence to city workplace. In the metropolitan area, weekend 
journeys may be longer for leisure trips or shorter on domestic errands. In SISs, such 
as those in the Caribbean, citizens may have limited transportation options and so may 
have to rely on their own transportation for the convenience of all journeys. The total 
distance travelled by commuters in their vehicles in these different environments can 
vary from location to location and the peculiarities of the local transportation landscape. 

With these nuances in mind, in an effort to derive variables for a probabilistic 
model, one must then consider the available data. Driving range of a typical domestic 
user can be treated as an estimation since the only data available are the sales of fuel. 
Fuel sales only may translate into an estimate of total distance travelled and it is very 
challenging to obtain driving route (freeways vs collector roads) and times (weekdays vs 
weekends, day vs night) as well as modes (eco-mode vs sport-mode) which are indica-
tors of the energy consumed for individual users. In order to disaggregate this into the 
range of a typical driver, this can only be done in the first instance by using statistical 
inferences to determine when recharging should be required. Also, with the “novelty” of 
EVs in the market, it is postulated that most users would, in the first instance, plug on 
to recharge their EV once the user arrives home. As such, Louie (2015) and Flammini et 
al. (2019) use real transaction data, with probabilistic and statistical ideas, in order to 
assess the impact on the grids. 
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According to Ul-Haq, Azhar, Mahmoud, Perwaiz, and Al-Ammar (2017), addition 
of EVs would affect the overall load pattern of distribution networks, leading to power 
quality concerns such as voltage imbalances, depending on EV charging patterns over a 
day. The research in Ul-Haq et al. (2017) also discusses the complications in attempting 
to provide a deterministic quantification of the number of EV charging events per day 
and the associated load on the grid. The complete mobility pattern of the EV driver is an 
important factor, which is not always known. Hence, Yilmaz and Krein (2012) expressed 
that there is a need to develop a probabilistic model of EV charging to estimate an ex-
pected load in the system, leading to a power index, through which utilities can upgrade 
their infrastructure to support large penetration of EVs. 

However, estimates of variables related to driver behaviour, such as arrival, de-
parture times, daily mileage and so on, to characterise the PEV charging process are 
a challenge. Currently, there is a lack of sufficient actual data for this purpose, partic-
ularly in SISs. Therefore, the idea supported in larger countries is to use samples from 
transportation mobility data to estimate a PDF. The research by Almutairi et al. (2018) 
explains that the purpose is to not only preserve the characteristics of each variable, but 
to generate simulated data for further comparison. Hence, the use of PDFs is a useful 
way to reflect driver behaviour. 

Additionally, Ul-Haq et al. (2017) develops a probabilistic model of the charging 
pattern for EVs associated with residential load profiles. The probabilistic model pro-
vides the activity for the residential load profiles and EV charging patterns over a period 
of twenty-four (24) hours. Other studies, such as Wang and Karki (2016) and Wang et al. 
(2015) use a theoretical PDF to provide a fit for the sample data. This gives a snapshot of 
the intrinsic randomness of driver behaviour variables, which is then used to generate 
synthetic data from the fitted PDFs. Thus, Normal and Lognormal PDFs are assumed 
for the variables arrival time and daily travel mileage respectively (Wang & Karki, 2016). 
Alternatively, Chi-square and Power law PDF are assumed for the aforementioned vari-
ables in other research (Wang, et al., 2015). 

While many papers have fit PDFs for individual driver behaviour variables as pre-
viously indicated, most have not considered weekday load profiles. In order to assess the 
true impact of EV charging load on the local power grid, building these EV load profiles 
is crucial. Since the typical SIS distribution system is fed via pole-mounted transformers, 
the typical SIS utility maintenance procedure is to only upgrade the pole-mounted trans-
former after customers have complained of regular low voltage problems or if the trans-
former has failed. This has led to the norm being that most pole-mounted transformers 
are usually operating close to their nominal kVA ratings. So any step increase in loading 
(EV charging) would most likely drive the distribution transformer beyond its rating. 
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Therefore, different EV load profiles based on driver’s behaviour and flexible EV 
charging needs can be used to analyse the effects of charging EVs on both the power 
grid’s loading limits and voltage fluctuations. In addition, empirical load profiles for 
EVs using electric mobility data can provide a genuine depiction of EV loading for fu-
ture planning mechanisms. This work attempts to assess which theoretical PDFs pro-
vide the best fit for weekday load curves based on aggregate residential and EV charging 
profiles. It provides a template for constructing and describing PDFs based on driver 
variables, which can be adopted in SISs. Following this overview of the current research, 
a brief methodology for such a scheme is also outlined. 

Then, suitable Goodness-of-Fit (GoF) statistics and PDFs based on each of the load 
curves by day of the week are discussed. GoF implies a comparison of the observed data 
with the data expected under the model, using some fit statistic, or discrepancy mea-
sure, such as residuals, Chi-square or deviance (Kéry & Royle, 2016). GoF testing is a 
crucial element of this analysis since it assesses if the model “fits” the data in a statistical 
sense. These tests are used to select the best fit PDF from a list of candidate probability 
distributions, in order to describe the EV weekly charging data scenarios. Subsequently, 
the importance of such analysis for charging behaviour is discussed, followed by pre-
liminary conclusions and recommendations. Overall, this research serves as a bench-
mark for future models, which can use these PDFs to assist with the implementation of 
EV charging control strategies for SISs, particularly in the Caribbean. 

Method

The lack of actual databases of EV charging data in many regions, particularly in SISs, 
has been the motivation to start the first phase of a larger predictive model, for con-
structing various driving behaviour variable distributions from relevant travel data. 
This work is a PDF fitting case study using in-home plug-in EV recharging profiles for 
348 vehicles. These are associated with 200 households randomly selected among those 
available in the 2009 Residential Consumption Survey (RECS, 2019) data for the Mid-
west region of the United States. 

This probability sample survey enables statistical selection of households to collect 
energy-related data. The publicly available dataset accounts for user activity and appli-
ance usage statistics from more than 12,000 households across the United States. These 
were statistically chosen to represent over 110 million household units, which included 
energy consumption details from each residence. Due to the lack of charging data for 
many SISs in the Caribbean, this methodology provides an experimental framework 
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to generalise the weekly load scenarios, using previously existing data in the United 
States. This lays the groundwork for further studies in SISs to be conducted using their 
unique travel mobility data. 

Power profiles which depict energy consumption patterns can fluctuate, and due 
to this randomness, the prediction of energy demand can be difficult. For these rea-
sons, according to the work of Muratori, Moran, Serra, and Rizzoni (2013) and Muratori 
(2017), residential demand profiles are variable since individual household behaviour 
is stochastic in nature. Each PEV starts charging as soon as it is connected to the grid 
and remains a sink until the battery is fully charged. Therefore, there is no coordination 
scheme applied to the dataset. Simulation of the amount of electricity required to fully 
charge the battery depends on the previous trips and charging events, which are simu-
lated using a personal energy consumption model (Muratori et al., 2013). 

The profiles proposed realistic patterns of residential power consumption. These 
were validated using metered data, with a resolution of 10 minutes. This research also 
simulated various scenarios considering different PEV market shares (Muratori, 2017). 
In this dataset, vehicles were assumed to be 60 % BEVs with a 200-mile range and 40 % 
plug-in hybrid EVs PHEVs with a 40-mile all-electric range based on market trends. 
Both Level 1 charging (1.92 kW) and Level 2 charging (6.60 kW) were assumed in the 
aforementioned dataset, and the profiles represented total PEV charging demand.

In this chapter, the Level I charging dataset (PEV-L1) was used, since it is expected 
that most households would charge at this level. This data represented an uncoordi-
nated charging scheme, where no control strategy was applied to deal with daily de-
mand. The electricity demand profiles for the 200 households (without EV charging) 
were mapped to the total EV demand within the corresponding households (since some 
residences have more than one EV). Then, the aggregate household load was computed 
using the sum of the base load and the total EV load per household. The equation for this 
computation is expressed as:

PWTotal Load,i = PWResid,i  + PWPEV,i  (1)

where PWTotal Load,i  represents the total power demand for residential load, i, and PWResid,i 
represents the power demand associated with the residential load, i and PWPEV,i is the 
corresponding total PEV-L1 load, for that household (i = 1,2, ... , 200). The models applied 
here ignore seasonal variations, considering only weekday and weekend profiles.

These load profiles were used to construct weekday demand curves by time of day. 
Then, daily load curves were fitted using polynomial curves for each day of the week. In 
each case, a non-linear equation was obtained. 
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The form of this equation is:

f(x)fitted = an xn + ... + a2x
2 + a1 x + a0  (2)

where ak represents the fitted model co-efficient of xk, the variable ‘time of day (hrs.)’, for 
k = O,1, ... , n. In this work, a 5th order polynom‘al is used (k = 5) ’or the best fit. 

For each day of the week, GoF statistics‘were generated to ’escribe the overall fit of 
the model to the original data based on differences between observed and predicted val-
ues. The coefficient of determination, R2, provides a measure of how well the fit explains 
the variation in the data. Root Mean Squared Error (RMSE) provides a relative measure 
of the fit, that is, how concentrated the data is around the line or curve of best fit. Let 
yi be the true response for the ith observation and ŷi be the corresponding predicted re-
sponse. The RMSE is defined as:

  (3)

Lower values of the RMSE closer to 0 indicate a better fit. 
Then, aggregate load curves categorised by weekday and weekend were examined 

in a probabilistic sense. Polynomial curve fitting was used to generate an estimated PDF 
for each load curve. XLSTAT 2019, the add-in package for Microsoft Excel, which uses 
maximum likelihood estimation (MLE) to derive the parameters of the probability dis-
tribution, provides the best-fitting theoretical PDF for each scenario. It should be noted 
that these distributions were chosen from a preset database of PDFs, but there may be 
others which can provide a better fit. 

It is necessary to conduct a GoF test to check whether the observed data follows 
the specified distribution. The Kolmogorov-Smirnov (K-S) test is a nonparametric test 
which compares the empirical (actual) cumulative distribution function (CDF), say G(x) 
to the theoretical CDF, say F(x). The K-S Statistic (D) computes the largest difference 
between the two functions for all sample values xi, i = 1,2, ... n, using the equation:

D=max[G(x)-F(x)]  (4)

This statistic was used to determine if the hypothesis of interest “the observed data fol-
low a specified distribution” was true when compared to a critical value. The significance 
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level or p-value of this test was set to 0.05 or 5 %, and the original assertion was rejected 
if p < 0.05. 

Results

The R Statistical Software (R Core Team, 2019) environment for statistical computing 
and graphics was used to match EVs to households to obtain the total load. Descriptive 
statistics, GoF, and probability plots were generated to reflect the load profiles by day of 
the week. These provide developers with tools for aggregate comparisons and to visual-
ise the differences between datasets, respectively. Figure 3.1 shows the residential load 
without EV charging, classified by time of day and day of the week. Ignoring seasonal 
variations, the general trends for the days of the week were similar. Subsequently, load 
curves were generated to include EV charging and the GoF of these curves analysed. 
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Figure 3.1  residential Load Curves by Time of Day and Day of the Week (no EV Charging)
Note. From “Probabilistic Assessment of Electric Vehicle Charging Behaviour,” by Hosein, Addison, Bahadoor-
singh, and Sharma, 2020, Caribbean Electric Industry Journal, 16, 36–39. DOI:10.47412/QZWP9167, and 
“Goodness of Fit of Probabilistic Models for Electric Vehicle Charging Behaviour,” by Addison, Hosein, and 
Bahadoorsingh, 2020, International Conference on Emerging Trends in Engineering and Technology,  
(http://conferences.sta.uwi.edu/iconetech2020/index.php)
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Hourly Load Cur ves by Day of the Week

Load curves were generated for the original uncoordinated charging scheme by day of 
the week, in contrast to seasonal load variations, which are most commonly examined 
in the literature. In order to determine the charging behaviour on a weekly basis, total 
load curves based on the residential consumption and additional load from daily EV 
charging were constructed graphically. 

These are shown in Figure 3.2 where, upon initial inspection, the peak demand 
occurred mainly between the hours of 4 p. m. (16:00 hrs) and 10 p. m. (22:00 hrs) daily. 
Descriptive statistics were generated as shown in Table 3.1. The mean, M (average) and 
standard deviation, SD (spread of data points about the mean) can later be used as esti-
mates of shape and scale parameters in certain PDFs. Tuesdays experienced the highest 
average load (19.47 MW) while Thursdays experienced the lowest (18.35 MW). The stan-
dard deviations were similar for each day, ranging from 5.32 MW to 6.07 MW. 

Each load curve was best fit to a polynomial to the 5th degree. The overall fit for 
each curve was quite good based on the correlation coefficients, R2 values (all close to 
1) while the RMSE value was the lowest for Thursday (0.65), indicating this particular 
day had the best relative fit. Since the demand by day of the week was fairly similar, 
aggregate weekday and weekend load curves were generated and validated. The mean 
weekday load was 19.04 MW, slightly less than that of the weekend (19.12 MW). These 
load curves were examined further to find suitable theoretical PDFs to represent them. 

G o o d n e s s - o f - F i t  t o  P o l y n o m i a l  F u n c t i o n s  a n d  K n o w n  P D F s

Non-linear polynomial equations were used to fit aggregate weekday and weekend load 
curves for this dataset. These can be used to estimate the probability of daily demand 
at a particular time of day. The weekend and weekday scenarios are both displayed in 
Figure 3.3. The PDFs of the load curves were best fit to polynomials to the 5th degree. The 
coefficients of the two equations were close, which indicated that the demand for week-
day and weekend, even with inclusion of the use of EVs on the grid, was quite similar 
for this particular region. The differences in demand here were reflective of their daily 
residential and EV charging behaviours. 

Subsequently, standard PDFs were also used to determine the distributions with 
the best fit. EasyFit 5.6 Professional, an add-in package in Microsoft Excel, performs 
GoF tests and is used to evaluate the most appropriate distribution based on the small-
est K-S value compared to the critical value, which is the best fit for the data. Figure 3.4 
shows the best three PDFs for the weekday load curves. The histogram represents the 
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spread of daily load over 24 hours. The PDF known as Johnson SB (System of Distribu-
tions) was found to be the best fit (K-S = 0.0162, p > 0.05), followed by the Generalised 
Gamma (K-S =0.0277, p > 0.05) and then the Dagum distribution (K-S = 0.0282, p > 
0.05), as shown in Table 3.2. 
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Figure 3.2  Total Load Curves by Time of Day and Day of the Week
Note. From “Probabilistic Assessment of Electric Vehicle Charging Behaviour,” by Hosein et al., 2020, Caribbean 
Electric Industry Journal, 16, 36–39. DOI:10.47412/QZWP9167, and “Goodness of Fit of Probabilistic Models for 
Electric Vehicle Charging Behaviour,” by Addison et al., 2020, International Conference on Emerging Trends in 
Engineering and Technology, (http://conferences.sta.uwi.edu/iconetech2020/index.php)

In Figure 3.4, the values of the parameters are γ=-0.441,δ=0.758 ,λ=26.639 and ξ=-2.564 for 
the Johnson SB distribution. The corresponding parameters for the Generalised Gam-
ma are k=146.71,α=0.00917 and β=23.824, while those for the Dagum distribution are 
k=0.0068,α=198.62 and β=23.766. The shape parameters in the aforementioned distributions 
allow for flexibility which allows them to fit various real-life scenarios. This enables the 
realistic stochastic dynamics of EV charging profiles to be showcased. 

https://doi.org/10.47412/QZWP9167
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Table 3.1 Descriptive and Goodness-of-Fit statistics for Total Load Curves (MW) by Day of the 
Week

MON TUES WED THURS FRI SAT sUN WEEkDAY WEEkEND
Mean 19.38 19.47 19.33 18.35 18.59 18.82 19.40 19.04 19.12

sD 6.03 6.07 5.84 5.32 5.67 5.94 5.83 5.76 5.87

Min 10.01 10.2 10.17 9.78 9.94 9.63 10.23 10.03 9.93

Max 28.50 28.86 28.37 26.44 27.00 26.70 26.80 27.75 26.62

R2

RMSE
0.98
0.83

0.98
0.76

0.98
0.86

0.98
0.65

0.98
0.69

0.98
0.72

0.98
0.75

0.98
0.74

0.98
0.74

Total 0.83 0.76 0.86 0.65 0.69 0.72 0.75 0.74 0.74

Note. From “Probabilistic Assessment of Electric Vehicle Charging Behaviour,” by Hosein et al., 2020, Caribbean Electric Industry 
Journal, 16, 36–39. DOI:10.47412/QZWP9167, and “Goodness of Fit of Probabilistic Models for Electric Vehicle Charging Behavi-
our,” by Addison et al., 2020, International Conference on Emerging Trends in Engineering and Technology, (http://conferences.
sta.uwi.edu/iconetech2020/index.php)

y (Weekday) = -4E-12x5 + 1E-09x4 - 2E-07x3 + 1E-05x2 - 0.0003x + 0.0063

y (Weekend) = -2E-12x5 + 7E-10x4 - 1E-07x3 + 1E-05x2 - 0.0003x + 0.0062
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Figure 3.3  Probability Density Functions for Power Demand Curves by Weekday and Weekend
Note. From “Probabilistic Assessment of Electric Vehicle Charging Behaviour,” by Hosein et al., 2020, Caribbean 
Electric Industry Journal, 16, 36–39. DOI:10.47412/QZWP9167, and “Goodness of Fit of Probabilistic Models for 
Electric Vehicle Charging Behaviour,” by Addison et al., 2020, International Conference on Emerging Trends in 
Engineering and Technology, (http://conferences.sta.uwi.edu/iconetech2020/index.php)
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The PDFs in Table 3.2 can be used to generate the uncoordinated charging power de-
mand, f(x), at a certain charging time, x. The advantage of these ‘best’ fitting PDFs is the 
additional shape parameters which provide a more realistic fit than popular PDFs such 
as the Normal and Weibull. This can be repeated for the weekend scenario also. In this 
way, random characteristics of the data can be preserved and EV charging load profiles 
can be easily estimated using these equations. Although known PDFs can be fitted as 
shown, polynomial curve fitting also provides a feasible technique to provide a close 
fit for such analysis. This flexibility is essential for further predictive demand analysis.

Table 3.2 Top Three Best Fitting PDFs for Weekday Load Curve

PrOBABILITY 
DIsTrIBUTION PDF k-s sTATIsTIC P-VALUE

Johnson SB 0.0162 1.0

Generalised Gamma
is the Gamma function

0.0277 0.99

Dagum 0.02821 0.99

Note. From “Probabilistic Assessment of Electric Vehicle Charging Behaviour,” by Hosein et al., 2020, Caribbean Electric Industry 
Journal, 16, 36–39. DOI:10.47412/QZWP9167, and “Goodness of Fit of Probabilistic Models for Electric Vehicle Charging Behavi-
our,” by Addison et al., 2020, International Conference on Emerging Trends in Engineering and Technology, (http://conferences.
sta.uwi.edu/iconetech2020/index.php)

Discussion

It is evident that descriptive statistics and goodness-of-fit metrics are useful tools to 
investigate the nature of large datasets. In particular, maximum daily peak values are 
of significance to distribution grid protection schemes to predict system disturbances. 
The mean values can be used to demonstrate the percentage increase of daily demand 
compared to lower EV penetration scenarios, thereby considering suitable EV charging 
scheduling schemes.

https://doi.org/10.47412/QZWP9167
http://conferences.sta.uwi.edu/iconetech2020/index.php
http://conferences.sta.uwi.edu/iconetech2020/index.php
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In particular, the existing daily load pattern obtained can be used to estimate the 
coincidental demand with vehicle(s) charging. This can now be used to predict if distri-
bution transformers will become overloaded, using the generated PDFs as a guide for 
predicted demand at a certain time in the week. In addition, this supports the develop-
ment of a “rule of thumb” guide for the utility related to the maximum number of EVs 
that can be added to a circuit, before power quality issues would be experienced.
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Figure 3.4  Probability Density Functions for the Weekday Load Curve
Note. From “Probabilistic Assessment of Electric Vehicle Charging Behaviour,” by Hosein et al., 2020, Caribbean 
Electric Industry Journal, 16, 36–39. DOI:10.47412/QZWP9167, and “Goodness of Fit of Probabilistic Models 
for Electric Vehicle Charging Behaviour,” by Addison et al., 2020, International Conference on Emerging Trends in 
Engineering and Technology, (http://conferences.sta.uwi.edu/iconetech2020/index.php)

In most SISs in the Caribbean, there is a need for a strategic EV infrastructure planning 
and likely upgrading of the supporting power system assets. This would also inform the 
utility/fleet owners as to where are the best location(s) to install public chargers and the 
expected impacts of those chargers on the grid. If these are not done concurrently, EV 
penetration can cause stability and power quality issues on these small island power sys-
tems. In this regard, GoF statistics can also provide key parameters which can encourage a 
more measured approach to compute the expected demand on the power system. 

There is room for further work to generate more accurate PDFs for corresponding 
load curves, in order to subsequently predict EV demand, as well as feed into more com-
plexed schemes. A limitation of typical theoretical PDFs used to model mobility data in 
larger countries is the inability to accurately describe the weekday demand at particular 

https://doi.org/10.47412/QZWP9167
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hours in the day for SISs, where climate and demand may also be vastly different. This 
may affect the accuracy of performance indicators and estimates at certain times. How-
ever, without actual local data, analogues of these PDFs modified to fit the location sit-
uation, are excellent starting points in the prediction of the effects of EV penetration on 
the health of the local grid. 

Development of realistic PEV load profiles is essential for accurate determination 
of impacts on power system planning and operation applications (Almutairi et al., 2018). 
The aim is for system operators to have tools to evaluate uncoordinated systems properly 
in order to build coordination charging schemes based on EV demand. The outputs of 
this assessment can also be fed into DSM programmes to improve power consumption 
efficiencies. DSM plays an important role in the development of smart grids. This study 
provides key insights into estimation of PDFs based on EV charging behaviours, in order 
to build and assess models associated with transportation mobility data for SISs. 

Hence, the real value in the methodology is the ability of the selected probabilistic 
model to provide the statistical representation of the power consumption at a partic-
ular time and location, based on the local users’ driving behaviour and corresponding 
charging patterns. This can be superimposed on the existing power consumption re-
quirements to determine the distribution network’s transformers and cables capacity 
utilisation. Thus, any SIS can adopt a probabilistic approach to enhance the uniqueness 
of their EV demand, in contrast to larger countries.

recommendations and Conclusion

This work presented an assessment of EV charging using goodness-of-fit of PDFs. These 
can then be utilised to build suitable PDFs to estimate country-specific metrics and en-
able forecasting models to be created for EV charging, using data-driven approaches. 
As EV penetration increases and charging coordination schemes are developed, power 
system planning is critical and generation expansion must continue to be ahead of the 
load growth. The adoption of renewable energy technology can play a role to potentially 
delay capital investment for power system upgrades at the transmission and distribu-
tion levels while developing prosumers that approach the adoption boundaries of vari-
ous V2X options. 

Undoubtedly, this data-driven approach will inform decisions suitable for the local 
landscape. Market readiness and progressive adoption in SISs, especially in the Carib-
bean, are faced with numerous unique policy, technical, infrastructural, legislative, and 
financial challenges, which may have stymied EV adoption. The holistic assessment 
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using accurate and applicable transportation data of the existing state of play in any SIS 
must be performed. This will include public and private sector analyses to identify an 
all-inclusive path for EV adoption. This path must be made transparent and accessible 
to all stakeholders identifying the surrounding industries, which can be developed and 
sustained. There are many players and actors (public, private and non-profit) that need 
to participate and actively contribute for successful EV adoption. Stakeholder consulta-
tion is, therefore, critical and public awareness paramount.

Consideration of the importation process, applicable standards, standard devel-
opment, tax exemptions and tariff considerations, suitable EV selections, licensing and 
insurance considerations, dealer, customer and utility responsibilities, safety aspects 
and vehicle-to-grid considerations have been documented (Meetoo et al., 2018). The re-
duction of GHGs and opportunities for improved health of the citizenry, linked to the 
sustainable development goals. National commitments will also influence policy devel-
opment and possibly accelerate policy implementation. The development of an imple-
mentation plan requires a careful technical review of the technology available, ensuring 
applicability to the proposed plan. 

Review of compliance, with existing local electrical and communication codes and 
standards is critical, especially if there is a long(er) term aspiration of integrating smart 
city measures. This can also initiate reviews of codes and standards. EVs can also pro-
vide an abundant supply of user data, and this introduces measures for privacy for big 
data collection and processing. Another such data-driven approach can also foster con-
fidence for emerging urban mobility and ride sharing services, third party EV charging 
applications utilising Fintech and cryptocurrencies. 

Therefore, it is recommended that the next step be to improve the goodness-of-fit 
of these probabilistic models for EV charging behaviour using real local transportation 
data. This can be extracted ideally from an EV pilot study or another hybrid approach, 
leveraging real local landscape commute data to produce revised probabilistic models. 
Future work should involve use of Monte Carlo simulation modelling techniques us-
ing predetermined PDFs for other mobility survey data variables such as home arrival 
times, home departure times, and daily mileage. 

These models can then be incorporated into the real local power system models to 
perform sensitivity analyses and adequacy assessments at various penetration levels at 
strategic locations in the island power system. Such technical studies will further enhance 
the power system planning exercises. This is particularly important for SISs to maintain 
the integrity of the quality of the electricity supply, minimise outages, optimise the util-
isation of the ageing electricity distribution networks and possibly delay capital asset 
investment(s).
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